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as effective as UDP-MurNAc-L-Ala-D-Glu-L-Lys-D- 
Ala-D-Ala in the exchange reaction (reaction 6). Clearly 
a systematic modification of the pentapeptide moiety 
will be necessary in order to  define additional features 
of this molecule that are necessary for activity. 

Conclusion 
Our knowledge of membrane function and structure 

is in its infancy. There is a need for basic enzymology 
of those enzymes that are intimately involved with 
the function of the membrane. A mechanistic analysis 
of the translocase would be greatly facilitated if the 
enzyme could be purified in soluble form. Although 
solubilization has been achieved with several diverse 
agents,6o these preparations have not been successfully 
fractionated. With information from mechanism st,ud- 
ies, we can begin to ask what is the relationship of 

(50) M. G. Heydanek, Jr., and F. C. Neuhaus, Biochemistry, 8, 
1474 (1969). 

this enzyme to the structure of the membrane? Does 
the ordered structure of the membrane have a profound 
effect on the activity of the enzyme? Alternately, 
we will ask whether this enzyme catalyzes the trans- 
location process as part of a membrane subunit. Is 
the enzyme located a t  the point of new cross-wall 
formation or is i t  uniformly distributed throughout 
the plasma membrane? Is this enzyme one of the 
key control points? The many questions that are 
posed indicate that only the surface of this fascinating 
problem has been probed. 
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There has been much progress during the past few 
years in understanding the properties of liquids, but 
much of this work is so recent that the theory of liquids 
is still widely regarded as an unsolved problem. 

It is interesting to note that the ideas which form the 
basis for the modern successful theory of liquids have 
been well known for almost a century. The work of 
van der Waals' in 1873 implied that the structure of a 
liquid is primarily determined by the repulsive forces 
between its molecules, so that a liquid may be regarded 
as a system of hard spheres with the attractive forces 
providing & uniform background energy. A century 
ago the properties of a system of hard spheres were not 
known. Thus van der Waals made drastic approxima- 
tions to obtain the hard-sphere equation of state. It is 
these approximations, rather than weaknesses in his 
physical ideas, which are responsible for the inade- 
quacies of his equation of state.2 

Zwanziga 
and others4s6 have shown that the effect of the attractive 
portion of the intermolecular potential, u(R), can be 
obtained by means of a perturbation expansion in the 
strength of the attractive potential using a system of 

Recently, these ideas have been revived. 
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(4) E. B. Smith and B. J. Alder, ibid., 30, 1190 (1959). 
(5) H. L. Frisch, J. L. Kats, E. Praestgaard, and J. L. Lebowits, 

J. Phys. Chem., 70, 2016 (1966). 

hard spheres as the unperturbed or reference system. 
Rowlinson6 has shown that the effect of the repulsive 
portion of u(R) can be obtained by means of a perturba- 
tion expansion in the inverse steepness of the repulsive 
potential, again using hard spheres as the reference 
system. Neither the Zwanzig nor the Rowlinson ex- 
pansion was adequate for the liquid state. 1'IcQuarrie 
and Katz7 combined these two expansions. However, 
their scheme had the effect of making the perturbations 
large and, as a result, the series did not converge at  
liquid temperatures and densities. An alternative 
scheme which is fully satisfactory has been developed 
by Barker and Henderson and will be treated in detail 
below. 

We shall consider only the equilibrium properties of 
simple liquids in which quantum effects may be ignored 
and in which the potential energy results from additive 
contributions of intermolecular potentials which are 
functions only of the intermolecular separations. The 
physical ideas used in the theory of liquids may thus be 
seen without excessive complexity. Such liquids are 
idealizations and do not exist in nature. As a result, 
the thermodynamic properties and the radial distribu- 
tion function (RDF), g(R), which is the probability of 
finding a pair molecules separated by a distance R,  
must be obtained by computer simulation studies which 
are discussed in the next section. 

(6) J. S. Rowlinson, Mol. Phys., 7, 349 (1964); 8, 107 (1964). 
(7) D. A. McQuarrie and J. L. Kats, J .  Chem. Phys., 44, 2393 

(1966). 
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For simplicity we shall restrict our attention to the 
We refer to the 

(1) 

Lennard-Jones 12-6 potential (eq 1). 

u(R) = 4e[(u/R)’2 - (u /R)6]  

fluid with this pair potential as “the 12-6 fluid.” For 
this fluid it is convenient to use the reduced density, 
p* = N u 3 / V ,  and the reduced temperature, T* = k T / c  

Computer-Simulation Methods 
Recent developments in computer-simulation 

methods have permitted explicit demonstration of the 
fact that  statistical mechanics contains a complete 
description of the equilibrium properties of classical 
solids, liquids, and gases and of the phase equilibria 
between them. There are two important simulation 
methods, the Monte Carlo method, due originally to 
Metropolis, et U Z . , ~  and the method of molecular 
dynamics, due to Alder and W a i n ~ r i g h t . ~  Since there 
have been excellent recent revie~s’0-’~ we shall give 
only a brief account of these methods. 

In  both of these methods a direct attack is made on 
the evaluation of many-body averages. A fixed num- 
ber of molecules (typically from several tens to several 
hundreds) in a cubic box is studied by the computer. 
To  minimize surface effects a “periodic boundary condi- 
tion” is used, so that the whole of space is imagined to 
be filled by periodic reproductions of the basic cell. 

I n  the RJonte Carlo method the molecules are moved 
one at a time according to certain rules which ensure 
that, in the chain of configurations so generated, in- 
dividual configurations appear with probability propor- 
tional to e-‘’xr, where U is the potential energy. Thus 
by averaging over the configurations of long chains one 
can evaluate averages in the Gibbs canonical ensemble. 
The thermodynamic energy can be calculated by aver- 
aging U ,  and the pressure, p ,  can be calculated by 
averaging the “virial of intermolecular forces” accord- 
ing to eq 2 ,  in which the vector rz  specifies the position 

N 

2 = 1  
pV = NkT - 1/3(crz. (dU/drJ) (2) 

of the i th atom and the angular brackets indicate aver- 
aging in the canonical ensemble. Of course the statis- 
tical accuracy depends on the length of the chain of con- 
figurations, and the accuracy with which an effectively 
infinite system is modelled depends on the number of 
molecules, but it turns out that  satisfactory accuracy 
can be attained with reasonable amounts of computer 
time. 

In  the method of molecular dynamics the successive 

(8) N. Metropolis, A. W. Rosenbluth, M. Ii. Rosenbluth, A.  H.  

(9) B. J. Alder and T. E. Wainwright, ibid., 27, 1208 (1957). 
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North-Holland Publishing Co., Amsterdam, 1968, p 79. 

Teller, and E. Teller, J .  Chem. Phys., 21, 1087 (1953). 
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(12) I. R. McDonald and K.  Singer, Quart. Rev. ,  Chem. Soc., 24, 
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Vol. 8, H. Eyring, D. Henderson, and W. Jost, Ed., Academic Press, 
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Figure 1. Equation of state of the 6 :  12 fluid. The three curves 
marked C, P, and E give the PY results using the compressibility, 
pressure, and energy equations, respectively. The points give 
the results of simulation studies. 

configurations of the system are found by solving by 
finite difference methods the Newtonian equations of 
motion, with appropriate random initial velocities being 
assigned. The quantities of interest are determined by 
time averaging, the temperature being determined from 
the average kinetic energy. 

Calculations made by both methods using the 12-6 
potential with parameters determined from gas proper- 
ties lead to excellent qualitative and good quantitative 
agreement with the properties of solid, liquid, and 
gaseous argon. In  its quantitative aspect this is some- 
what fortuitous, since the approximation of pair-addi- 
tive 12-6 interactions is not a good one for argon. How- 
ever, calculations with more realistic pair and triplet 
potentials by these methods lead to excellent agreement 
with experiment. Some simulation results for the 
12-6 are displayed in Figures 1-4. 

It is conventional to describe simulation calculations 
as “computer experiments,” but it should be realized 
that they are valid ‘(experiments” only because the 
laws of statistical mechanics (for the Monte Carlo 
method) and kinetic theory (for molecular dynamics) 
are correctly formulated. In  fact, the agreement of 
such calculations with experiment provides an experi- 
mental test of statistical mechanics and kinetic theory. 

Percus-Yevick Theory 
One theory which has been widely applied to liquids 

(14) W. W. Wood and F. R. Parker, J .  Chem. Phys., 27, 720 
(1957). 

(15) I. R. McDonald and K. Singer, ibid., 50, 2308 (1969). 
(16) L. Verlet, Phys.  Rea., 159, 98 (1967); 165, 201 (1968). 
(17) D. Levesque and L. Verlet, ibid., 182, 307 (1969). 
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Figure 2 .  The solid curves are 
isotherms given by the BH theory and the points give the results 
of simulation studies. 
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Figure 3. The curves give the results 
of the BH theory and the points give the results of simulat,ion 
studies. 

R D F  of the 12-6 fluid. 

is that of Percus and Yevick18 (PY). In this theory an 
integral equation for g(R) is developed. Once this 
integral equation has been solved, the thermodynamic 
properties can be obtained by first calculating the com- 
pressibility, the pressure, or the energy and then cal- 
culating the other thermodynamic properties. We 
refer to these methods as the compressibility, the pres- 
sure, and the energy methods. Each of these methods 
yields the same result if an exact g(R) is used. How- 
ever, the PY g(R) is not exact and as a result the three 
methods yield different results. That is, the PY theory 
is not thermodynamically consistent. 

As is ~7ell k n 0 w n , ~ 9 ~ ~ ~  the PY equation has an exact 

(18) J. K. Percus and G. J. Yevick, Phys. Rev., 110,l (1958). 
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Figure 4. The curves marked - - -, --, 
e . . ,  give the results of the PY theory, the BH theory, and the 
WCA theory, respectively. The points give the results of simu- 
lation studies. 

RDF of the 12-6 fluid. 

solution for the hard-sphere potential. Comparison 
with simulation studies shows the PY g(R) and the 
resulting thermodynamic properties to be quite good. 

For other potentials the PY equation must be solved 
numerically. The results for the 12-6 liquid have only 
recently been obtained. Some representative results 
are shown in Figures 1 and 4. The pressure and com- 
pressibility resultsz1,2z are rather poor. However, the 
energy equation resulW3 are in good agreement with 
the simulation results. The agreement, however, is not 
as good as that obtained from the Barker-Henderson 
perturbation theory which we now consider. 

Perturbation Theory of Barker and Henderson 
In this theory we assume that certain properties of 

the hard-sphere fluid are known, and we use these 
properties with a perturbational technique to derive 
properties of a real fluid with attractive forces and 
steep but not infinitely steep repulsive potential. 

For a fluid with intermolecular potential u(R) we 
definez4 a modified potential v(R) by eq 3, where d‘ = 

exp[-pv(R)l = (1 - H(d’ - p ) f  exp[-Ppu(d’)l + 
~ ( d ’  - P)  + H ( R  - d(exp[--fiu(R)1 - 1) (3) 

(19) M. S. Wertheim, Phys. Rev. Lett., 10, 321 (1963); J .  Math. 

(20) E. Thiele, J .  Chern. Phys., 39, 474 (1963). 
(21) R. 0. Watts, Can. J .  Phys., 47, 2709 (1969). 
(22) F. Mandel, R. J. Bearman, and M. Y. Bearman, J .  Chern. 

(23) D. Henderson, J .  A. Barker, and R. 0. Watts, IBM J .  Res. 

(24) J .  A. Barker and D. Henderson, J .  Chem. Phys., 47, 2856, 

Phys., 5 ,  643 (1964). 

Phys., 52, 3315 (1970). 

Develop., 14, 668 (1970). 

4714 (1967). 
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d + ( R  - d ) / a  and H ( x )  is the,Heaviside step function, 
equal to zero for x < 0 and 1 for x > 0; d is the hard- 
sphere diameter, so far unspecified; p is usually taken 
to be equal to u; and a and y are “inversesteepness” 
and “depth” parameters, respectively. For a and y 
equal to 0, v(R) becomes equal to the hard-sphere 
potential, and with a = y = 1, v(R) becomes equal to 
u(R). Our procedure is to  make a double Taylor series 
expansion of the Helmholtz free energy, A ,  in a and y 
about the point a = y = 0. The result, if terms of 
order a y ,  a2, y3, and all higher order terms are ne- 
glected, can be written in the form 

in which 

where w(Raj)  is equal to u(REI) for R,, > u and to zero 
for R,, < u; thus U1 is the total attractive part of 
the interaction. The brackets ( )o mean “average over 
the configurations of hard-sphere system of diameter 
d,” and A. is the free energy of the hard-sphere system. 
Detailed derivation of this result is given elsewhere.24 

The best choice for p is the one for which A is insensi- 
tive to variations in p. At liquid densities, the choice 
p = u has this property. At very high densities, such a 
choice gives p < u. This has the effect of making d 
density dependent at high densities. 26 

We choose d so that the second term in the second 
form of (4) is zero, and setting a = y = 1 to give the 
approximate A for the real system, we find 

A A0 (Udo + - -  - = -  
NkT NkT NkT 

Thus the softness of the repulsive potential has been 
dealt with by our choice of d, and the second and third 
terms in (5) describe the effects of the attractive 
potential. To discuss these terms further we sub- 
divide the range of intermolecular distances R > d into 
intervals R1 to  R2, R2 to R3, etc., sufficiently narrow so 
that the potential may be regarded as effectively con- 
stant within each range, and we denote by ua  the value 
of the potential in the i th  interval and by N ,  the num- 
ber of intermolecular distances lying in that interval. 
In  our numerical work we use the subdivision Ra+l = 
d ( l  + 0.07i)”’. Then (5) may be rewritten 

In earlier workz4 we used approximate values for the 
averages of N ,  derived from the PY equation, and we 
proposed semimacroscopic approximations for the 
covariances of N ,  and N ,  and found reasonable agree- 
ment with experimental and simulation results. 

More recently we have performed extensive nfonte 
Carlo calculations of these averages and covariances for 
a wide range of hard-sphere densities. An account of 
the methods used has been given p r e v i o ~ s l y , ~ ~  and 
preliminary results of these calculations have been used 
elsewhere,26 27 but these were slightly in error at the 
highest densities because of inadequate equilibration. 
In  the present calculations we took special care on this 
point, generating up to 2,000,000 preliminary configura- 
tions to ensure that no effect of the initial configuration 
remained. 

Once A has been determined using (G),  other thermo- 
dynamic quantities such as energy and pressure may be 
calculated by differentiation with respect to tempera- 
ture and pressure. In  Figure 2 we compare values of 
pV/NkT calculated in this way (called BH) with those 
derived from simulation calculations. 14-17 It will be 
seen that the agreement is excellent. The calculated 
free energies also agree almost exactly with those de- 
rived from simulation studies; we compare pressures 
rather than free energies because this is a more sensitive 
test of the BH perturbation theory. It appears that 
the neglected higher order terms are very small indeed. 

It is also of interest to use the BH theory to calculate 
g(R). By an argument similar to that leading to  ( G )  i t  
can be shown that, to first order in the depth parameter 
y ,  the average value of N ,  in the actual system with 
attractive forces is given by eq 7 .  From this one can 

( N , )  = (Nab - ~Cuj( (NzN,)o  - (Ni)o(Nj)o) (7) 
3 

calculate g(R) by relation 8, in which R,’ is a mean 

g(R,’) = 3(N,)/  [2aNp(Ra+l3 - Ri3)  1 (8) 
value of R in the interval R, to R,+l, for which we chose 
the arithmetic mean of Ra and R,+I. I n  Figure 3 we 
show the results of such a calculation for a temperature 
and density corresponding roughly to the triple point. 
To take into account the softness of the repulsive 
potential we assumed that, for R < R2, y(R) has the 
form Ae-BU(R),  with the normalization constant A 
chosen so that the appropriate integral of g(R) up to 
R2 reproduced the correct value of (N1). This is con- 
sistent with the philosophy of our approach which is 
based on the fact that e-Bu(R) is varying very rapidly 
near R = d. 

(25) D. Henderson and J. A. Barker, Phys. Rev. A ,  1, 1266 (1970). 

(26) J. A. Barker, D. Henderson, and W. R. Smith, J .  Phys. SOC. 

(27) D. Henderson and J. A. Barker in ref 13, Vol. 8, Chapter 6. 
Jap. ,  S u p p l . ,  26, 284 (1969). 
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The dashed line in Figure 3 is the zero-order distribu- 
tion function determined by hard-sphere packing, and 
the solid line is the first-order result. It is basically the 
attractive potential which produces the rounding of the 
peak; the effect of the softness of the repulsive poten- 
tial is apparent only for R < 1.03a, where g(R) has 
fallen to  about 1.5. 

A more detailed comparison for the region of the first 
peak is shown for three thermodynamic states in Figure 
4. I n  this case the solid line is our first-order result 
while the dashed line represents results calculated 
from the P Y  equation. It is clear that  a t  low temper- 
atures the BH theory gives a considerably more accu- 
rate radial distribution function than does the PY 
theory. 

Thus it appears that  part of the success (relative to  
the P Y  theory) of our perturbation theory is due to the 
fact that  our procedure for calculating thermodynamic 
properties is more similar to the energy method than 
to the pressure or compressibility methods but that  
part is also due to the fact that  the perturbation theory 
gives a more accurate g(R). 

Other Perturbation Theories 
Recently, two theories similar to the BH perturbation 

theory have been developed. The first is that  of 
Mansoori and Canfield28 and Rasaiah and Ste11,2g 
who show that the perturbation series of Z ~ a n z i g , ~  
when truncated after first order, is an upper bound on 
A .  They choose d to minimize this upper bound. 
This approach gives fairly good results a t  low tempera- 
tures, but the results become worse as the temperature 
is increased because the finite steepness of the repulsive 
portion of the potential has not been adequately treated. 

Very recently, Weeks, Chandler, and Andersena0 
(WCA) have proposed an interesting perturbation 
theory which uses a reference fluid whose potential is 

(28) G. A. Mansoori and F. B. Canfield, J. Chem. Phys., 51, 4958 

(29) J. Rasaiah and G. Stell, Mol. Phys., 18, 249 (1970). 
(30) J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. 

(1969). 

Phys., 54, 5237 (1971). 

given by eq 9, where Rm is the value of R for which 

uo(R) = u(R) + E ( R  < Rm) 
0 ( R  > Rm) (9) 

u(R) is a minimum. For the 12-6 potential R, = 

The difficulty with the WCA theory is that  the prop- 
erties of their reference fluid are not well known. To 
overcome this, they introduce a number of untested 
approximations. As may be seen from Figure 4, they 
obtain very good results a t  high densities. I n  order to  
examine their theory, we have made some Monte Carlo 
studies of their reference fluid and have found that the 
R D F  which they propose as an approximation to  that 
of the reference fluid is actually a better approximation 
to that of the 12-6 fluid than to  that of the reference 
fluid. This results from the use of the P Y  hard sphere 
RDF. If accurate values for this function are used 
their RDF approximates well that  of the reference fluid 
but less closely that of the 12-6 fluid. Their approach 
is promising. 

Summary 
I n  this review we have briefly considered three treat- 

ments of the equilibrium properties of the liquid state: 
computer-simulation methods, the PY theory, and 
perturbation theory. The comput er-simulation 
methods are exact treatments and provide valuable 
quasiexperimental data for model systems. However, 
they have the disadvantage of requiring large amounts 
of computing time and they often provide little intuitive 
insight. The P Y  theory requires moderate amounts of 
computing time and, if used with the energy equation, 
gives satisfactory results for the thermodynamic prop- 
erties. However, it yields even less insight than do the 
simulation studies. On the other hand, the BH per- 
turbation theory requires very little computing time, 
gives excellent results, and provides considerable in- 
sight into the factors determining the structure of 
liquids. 
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Orbitals are, strictly speaking, the wave functions of 
stationary states of systems containing one electron. 
From the point of view of quantum mechanics it is by no 
means obvious that atoms or monatomic ions contain- 
ing more than one electron can be described in terms of 
electron configurations in which each electron is assigned 

to  an orbital, with no more than two electrons in any or- 
bital. Yet the “buildup” or Aufbau of the periodic 
table is based on this very picture. It is perhaps even 
more surprising that the ground state and the low-lying 
excit,ed levels of molecules and polyatomic ions can be 
classified spectroscopically in terms of one-electron con- 


